Auditing and Maintaining Provenance
in Software Packages

Quan Pham!®)_ Tanu Malik?, and Ian Foster!-2

! Department of Computer Science, The University of Chicago,
Chicago, IL 60637, USA
quanpt@cs.uchicago.edu
2 Computation Institute, The University of Chicago, Chicago, IL 60637, USA
tanum@ci.uchicago.edu

Abstract. Science projects are increasingly investing in computational
reproducibility. Constructing software pipelines to demonstrate repro-
ducibility is also becoming increasingly common. To aid the process of
constructing pipelines, science project members often adopt reproducible
methods and tools. One such tool is CDE, which is a software packaging
tool that encapsulates source code, datasets and environments. How-
ever, CDE does not include information about origins of dependencies.
Consequently when multiple CDE packages are combined and merged
to create a software pipeline, several issues arise requiring an author
to manually verify compatibility of distributions, environment variables,
software dependencies and compiler options. In this work, we propose
software provenance to be included as part of CDE so that resulting
provenance-included CDE packages can be easily used for creating soft-
ware pipelines. We describe provenance attributes that must be included
and how they can be efficiently stored in a light-weight CDE package.
Furthermore, we show how a provenance in a package can be used for cre-
ating software pipelines and maintained as new packages are created. We
experimentally evaluate the overhead of auditing and maintaining prove-
nance and compare with heavy weight approaches for reproducibility
such as virtualization. Our experiments indicate minimal overheads.

Keywords: Reproducibility - Software packaging tools - Software
provenance * Tools and methods

1 Introduction

Computational reproducibility is a challenge, yet crucial for science. To meet the
challenge, large-scale science projects are increasingly adhering to reproducibility
guidelines. For instance, software associated with a publication is made avail-
able for download (see Figshare [20], RunMyCode [21], and Research Compen-
dia [19]); but increasingly many science projects are making end-to-end software
pipelines available. These pipelines are often for the larger scientific community,
as in the case of Bio-Linux 5.0 [15], which is a bioinformatics virtual machine

(© Springer International Publishing Switzerland 2015
B. Ludéscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 97-109, 2015.
DOI: 10.1007/978-3-319-16462-5_8

98 Q. Pham et al.

that provides access to several pipelines for conducting next-generation sequence
analysis, or sometimes to demonstrate project impacts as in the case of Swift
Appliance [3], a virtual machine, which demonstrates crop simulation models
using workflow systems.

To help projects adhere to these reproducibility guidelines, project members
often adopt best practices and tools for developing and maintaining software so
that their contributed software quickly becomes part of a pipeline. In this paper,
we focus on software packaging tools. We describe how auditing and maintaining
software provenance as part of a packaging tool can significantly help in building
and deploying software pipelines. In particular, provenance can be helpful in
cutting down manual effort involved in ensuring software compatibility, thus
leading to improved administration of software pipelines.

A software pipeline consists of many individual software modules. Given the
collaborative nature of science, it is not uncommon for modules to develop inde-
pendently. Furthermore, a module itself may depend upon externally-developed
libraries, which evolve independently. To ensure library compatibility, and avoid
what is often called “dependency hell”, a software module is often packaged
together with specific versions of libraries that are known to work with it. In
this way, contributing project members can ensure that their module will run
on any target system regardless of the particular versions of library components
that the target system might already have installed.

However, packaging software modules with associated dependencies, but with-
out clearly identifying the origin of the dependencies, gives rise to a number of
provenance-related questions, especially when constructing software pipelines.
For instance, determining the environment under which a dependency was built
or other dependencies which must be present for using a module, are questions
that must be answered when combining packages for creating software pipelines.
Similarly, if a new software package is released, then through dependency analy-
sis it will be useful to know which packages of a pipeline can use it. If a new
version of a library is released that contains security fixes, then it will be useful
to know which pipelines or packages are vulnerable.

To answer such questions, we must be able to capture and determine the
provenance of a software entity, i.e., capture and determine where it came from.
Current package management systems do not provide a means to audit or main-
tain software provenance within it. We use CDE, a software packaging tool that
creates a source code and data package while identifying all static and dynamic
software dependencies. CDE has also been successfully shown to create software
packages out of many development environments. Though CDE packages sta-
tic and dynamic dependencies for an application, it does not store associated
provenance.

The first contribution of this paper is to enhance CDE to include software
provenance, i.e., provenance of shared libraries and binaries on which a program
depends. We call this enhanced CDE as CDE-SP. We describe tools and meth-
ods to audit, store, and query this provenance in CDE-SP. We then describe
a science project use case in which software reproducibility is a concern. Our
second contribution is to show how provenance, audited and stored as part of

Auditing and Maintaining Provenance in Software Packages 99

onitor
cde <command> g pirace | ©4€ | cde-exec <command>
/ mqn,‘[or ! redirect
fopen(using ptrace fopen()
system call cde-package fopen()
Jusr/lib/coreutil.so Weanemenisdl (Just/lib/coreutil.so e emeutiso
(a) Audit mode (b) Execution mode

Fig. 1. CDE audit and execution modes

a CDE-SP package, can help in creating software pipelines for this use case.
Finally, we show how provenance can be maintained as new packages are built
during construction of software pipelines.

The remainder of the paper is structured as follows: We describe CDE, a
software packaging tool that can identify and package program dependencies, in
Sect. 2. Currently, CDE does not audit provenance of the program dependencies
that it determines. In Sect. 3, we describe provenance that can be audited, stored,
and queried in CDE-SP, resulting in a provenance-included package. In Sect. 4
we describe a science use case where provenance, included as part of software
packages, can help in creating pipelines. In Sect. 5 we further enhance CDE-SP to
enable it to maintain correct provenance as new packages are created. In Sect. 6,
we conduct a thorough experimental evaluation to measure the overheads associ-
ated with auditing and maintaining provenance. Section 7 provides an overview
of the related work in this area. We conclude in Sect. 8.

2 CDE: A Software Packaging Tool

The CDE tool [12,13] aims to easily create a package on a source resource and
execute a program in that package on a target resource without any installation,
configuration, or privilege permissions. It runs in two main modes: audit mode
to create a CDE package, and execution mode to execute a program in a CDE
package.

In audit mode (Fig.1la), CDE uses the UNIX ptrace system call interposi-
tion to identify the code used by a running application (e.g., program binaries,
libraries, scripts, data files, and environment variables), which it then records
and combines to create a package. For example, when a process accesses a file
or a library using the system call fopen(), CDE intercepts that syscall, extracts
the file path parameter from the call, and makes a copy of the accessed file into
a package directory, rooted at cde-root and consisting of all sub-directories and
symbolic links of the original file’s location.

The resulting package can be redistributed and run on another target
machine, provided that the other machine has the same architecture (e.g. x86).
The original CDE as available through [12,13] was limited to major Linux ker-
nel versions (e.g. 2.6.x), but we have removed that restriction by adapting it

100 Q. Pham et al.

for the newly released Linux kernel 3.0 as well as for Mac OS X by using the
specification described here [2].

In execution mode (Fig. 1b), while executing a process from a package, CDE
also monitors that process via ptrace. Each file system call is interrupted and its
path argument is redirected to refer to the corresponding path of that file within
the root directory of the CDE package on the target resource. In essence, CDE
provides a lightweight virtualization environment to its running processes by
providing the cde-root directory as a sandbox in a chroot operation. Redirecting
all library dependency requests into this sandbox, CDE fools the target program
into believing that it is executing on the original source machine [12]. It is to
be noted that CDE binary only captures a single execution path, which is the
execution path taken during run-time. If different execution paths need different
types of dependencies, some dependencies may be left out. However, CDE does
provide external scripts in its source code to find additional dependencies from
strings inside binaries and libraries of captured packages.

3 CDE-SP: Software Provenance in CDE

The objective of auditing provenance is to capture additional details of the cre-
ation and origins of a library or a binary, such as the version of the compiler,
the compilation options used, the exact set of libraries used for linking. This
information must be gathered on a per environment basis so that it becomes
easy to compile and create software pipelines.

Audit. CDE’s audit feature identifies static and dynamic program dependen-
cies. We instrument this feature to first determine a dependency tree, and then
use UNIX utilities to store additional provenance information about each depen-
dency. To create a dependency tree, process system calls are monitored that audit
process name, owner, group, parent, host, creation time, command line, environ-
ment variables and the process binary’s path. Whenever a process executes a file
system call, a dependency of that process is recorded. In general, this depen-
dency can be a data file or a shared library. We identify shared libraries using
standard extensions, such as .so for system libraries and .jar for Java libraries,
and create a dependency tree based on these libraries. Information about bina-
ries and required shared libraries, such as version number, released version of
shared libraries, and associated kernel distribution, is audited using UNIX com-
mands file, ldd, strings, and objdump. By including these commands, we can
obtain other static and dynamic dependencies, some of which are not audited
by CDE during run-time. This set of commands is a more comprehensive way of
obtaining dependencies comparing to CDE’s external scripts. Current operating
system distribution and user information is recorded from command uname -a
and function getpwuid(getuid()).

Storage. Each package can store captured provenance to a relational database.
Since this provenance will be useful for whatever target resource package is
being used, we believe it is best to store this provenance within the package

Auditing and Maintaining Provenance in Software Packages 101

itself. We use LevelDB, a very fast and light-weight key-value storage library
for storing provenance. To store provenance graphs that contain process-file and
process-process edges, in a key-value store, we encode in the key the UNIX
process identifier along with spawn time. The value is the file path or the process
time. Table 1 describes the LevelDB schema for storing provenance graphs:

Table 1. Level DB key-value pairs that store file and process provenance. Capital letter
words are arguments.

Key Value Explanation

pid.PID1.exec. TIME PID2 PID1 wasTriggeredBy PID2
pid.PID.[path, pwd, args| VALUES Other properties of PID
io.PID.action.]IO.TIME | FILE(PATH) | PID wasGeneratedBy/wasUsedBy

FILE(PATH)
meta.agent USERNAME | User information
meta.machine OSNAME Operating system distribution

Query. LevelDB has a minimal API for querying. Instead of providing a rich
provenance query interface, currently we implement a simple, light-weight query
interface. The interface takes as input the program whose dependencies need to
be retrieved. Using depth first search algorithm, a dependency tree in which the
input program is the root is determined. The result is saved as a GraphViz file.
Since the result may include multiple appearances of common files like those
in /lib/, /usr/lib/, /usr/share/, and /etc/ directories, the query interface also
provides an exclusion option to remove uninteresting dependencies.

4 Using CDE-SP Packages to Create Software Pipelines

We describe a software pipeline through a use case. We then describe how CDE-
SP packages can help to create the described software pipeline. The use case will
also be used for experimental evaluation in Sect. 6.

4.1 Software Pipelines

Scientists with varying expertise at the Center for Robust Decision Making on
Climate and Energy Policy (RDCEP) engage in open-source software develop-
ment at their individual institutions, and rely primarily on Linux/Mac OS X
environments. The Center often needs to merge its individual software modules
to create software pipelines. We describe software modules being developed by
three scientists, henceforth denoted as Alice, Bob, and Charlie, and the associ-
ated software pipeline that needs to be constructed.

— A measures and characterizes land usage and changes within it. She develops
data integration methods to produce higher-resolution datasets depicting

102 Q. Pham et al.

inferred land use over time. To develop the needed methods, her software envi-
ronment consists of R, geo-based R libraries (raster, ggplot2, xtable, etc.), and
specific versions of Linux packages (r-base v2.15, libgdal v1.10, libproj v4.8).

— B develops computational models for climate change impact analysis. He
conducts model-based comparative analysis, and his software environment
consists of A’s software modules to produce high-resolution datasets, and
other Linux packages, including C++, Java, AMPL [11] modeling toolkits
and libraries.

— C uses A and B’s software modules within data-intensive computing
methods to run them in parallel. C’s scientific focus is the efficiency of dis-
tributed computing methods and his software environment is primarily Java
and Python and its libraries on Linux.

— For the Center, the goal of their combined collaboration is to predict future
yields of staple agricultural commodities given changes in the climate; changes
that are expected to drive, and be influenced by, changes in land usage [9].
The Center curator’s environment is Mac OS X and a basic Unix shell.

B's Package (from A's)

A's Package

[Retrive data—>/Aggregation|—>{Generate imagesH—>Model-based analysis|
A A A

C's Package (Merge from B's) -

Fig. 2. Software packages of A, B, and C

Given the linear workflow of the science problem, it is often the case that
B needs to rerun A’s software in his own environment. Instead of installing,
this can simply be achieved if A shares a CDE package with B. However, if B
attempts to create a software pipeline that includes A’s package and her software
modules, then he needs to verify the provenance of each dependency included in
A and her software. This is because a dependency with the same file path, but
built on different Linux distributions (therefore different content), will conflict.
In fact, if B creates a CDE package corresponding to this pipeline, one of the
dependencies will be overwritten in the newly created package. By using the
provenance-enabled CDE packages, which store md5 checksums of dependen-
cies, such origins can be immediately verified, without manually tracking kernel
distributions on which the dependency was built or communicating with the
author of the software. Similarly, by checking versions of all dependencies within
the package, B can document the compatibility of the newly created software
pipeline.

As the use case demonstrates, C needs to use A’s and B’s packages, and
the problem of dependency tracking, i.e., determining distributions and versions,

Auditing and Maintaining Provenance in Software Packages 103

given several dependencies and software environments, can increase significantly.
In the Appendix we describe the magnitude of the dependency tracking problem
if software development is undertaken in cloud-based environments.

5 Merging Provenance in CDE-SP

While provenance-included packages can eliminate much of the manual and
tedious efforts of ensuring software compatibility, the downside is that prove-
nance stores within a package need to be effectively maintained as software
pipelines are themselves cast into new packages. Consider the Center’s need for
creating a software pipeline that satisfies reproducibility guidelines. To help the
Center build this software pipeline, assume A, B, and C share their individual
provenance-included packages. By exploring A, B and C’s package provenance,
the Center can examine all data and control dependencies among the contribut-
ing packages. The Center can then define a new experiment with steps using
data and control dependencies from the three contributed packages, and cre-
ate a new software package of this experiment. In particular, correct pathnames,
attribution, etc., will need to be verified. We next describe how CDE-SP, with
a —m option, can be used to merge provenance from contributing packages.

In the typical CDE audit phase, file system binaries and libraries found in
the path of program execution are copied to the cde-root directory. However,
provenance may indicate two dependencies with the same path but emerging
from different distributions or versions. In CDE-SP, these two files are stored
in separate directories identified by a UUID, which is unique to the machine
on which CDE-SP is executed. The UUID is the hash of the Mac address and
the operating system. By creating this separate directory based on a UUID, files
with the same paths but different origins can be maintained separately. Note that
only files with differing content but the same path are maintained in separate
UUID directories. Files with different paths can all still be in the same generic
cde-root folder. We also include versioning of UUID directories so that they are
copied and maintained correctly in new packages.

Because provenance informs that separate UUID based directories be created
within a CDE-SP package, correspondingly, the modifications are needed in the
LevelDB provenance store and the CDE-SP redirection mechanism. The Lev-
elDB path in the value field needs to reflect the UUID directory where the
dependency exists. The CDE redirection, which redirects all system calls to the
cde-root directory, in CDE-SP needs to redirect to the appropriate UUID direc-
tory. This redirection can be tricky since it needs to know where the process
is running. To enable correct redirection, CDE-SP with merge maintains a cur-
rent_root_id pointer for each tracing process. This bookkeeping pointer helps in
redirecting to the package root directory of the pointer in case the process forks
other processes. Alternatively, if the process performs an ezecve() system call,
or accesses a file, or changes directories, absolute paths are read and checked to
determine if redirection is necessary.

Another issue when merging two packages is maintaining licensing infor-
mation. While general licensing issues are outside the scope of this paper, the

104 Q. Pham et al.

current CDE-SP maintains authorship of software modules during the merge
process. When two packages are merged in their entirety, the authorship of a
new package is the combined authorship of the contributing packages. However,
when part of a contributing package is used to create a new package, then author-
ship must be validated from the provenance stored in the original package. To
validate, CDE-SP generates the subgraph associated with the part of the pack-
age, and, using subgraph isomorphism, validates that it is indeed part of the
original provenance graph.

The subgraph isomorphism (or matching) problem is NP-complete [22] lead-
ing to an exponential time algorithm. In our case, we compare file paths and
names to determine if two provenance graphs are subgraph-isomorphic. In our
implementation of VF2 subgraph-isomorphism algorithm [6], we reduce compu-
tation time by only matching provenance nodes of processes with the same path
to their binary and working directory, and only matching provenance nodes of
files with the same path. We believe that this implementation is sufficient for
validating provenance subgraph isomorphism among lightweight packaging tools.

6 Experiment and Evaluation

The benefits of reproducibility can be hard to measure. In this Section, we
describe the three experiments we conducted to determine the overall perfor-
mance of CDE-SP.

1. We determined the performance of CDE-SP in: auditing performance over-
head, disk storage increase, and provenance query runtime;

2. We determined the redirection overhead if multiple UUID-based directories
are created in CDE-SP; and

3. We compared the lightweight virtualization approach of CDE-SP with
Kameleon [10], a heavyweight virtualization approach used for reproduci-
bility.

All experiments in this section are tested on an Ubuntu 12.04.3 LTS workstation
with an 8 GBs RAM and 8-core Intel(R) processor clocking at 1600 MHz.

6.1 Audit Performance and Size Overhead in CDE-SP

In Table 2, we record execution times and disk usage of CDE and CDE-SP in
auditing a software pipeline mentioned in Sect.4.1. Both CDE-SP and CDE are
set up for a pipeline with two applications: Aggregation and Generate Image.
Each is repeated 10 times. The result shows approximately a 2.1 % slowdown
of CDE-SP in comparison with CDE due to provenance capture. The result fits
with our observation that the overhead is from ptrace which both CDE and CDE-
SP rely on heavily to implement their capture capabilities. Additional functions
that store provenance record to LevelDB database introduce negligible prove-
nance capture overhead compared to 0-30% CDE virtualization overhead [12].
In this setup, CDE package uses 732 MB; while CDE-SP, in addition to the

Auditing and Maintaining Provenance in Software Packages 105

Table 2. Increase in CDE-SP performance is negligible in comparison with CDE

Create package | Execution Disk usage Provenance query
CDE 852.6 2.4 (s) | 568.8+2.4 (s) | 732MB
CDE-SP |870.5+2.5 (s) |569.5+1.8 (s) | 732MB +236kB | 0.4 +0.03 (s)

1600 T T

1400 - [b

1200 J b
1000 B

800 b

Seconds

600

X

0 Il Il
Kameleon CDE-SP

Fig. 3. Overhead when using CDE with Kameleon VM appliance

software package, creates a LevelDB database of size 236 kB (0.03 % increase)
that contains approximately 12,000 key-value pairs.

To measure provenance query performance, we created a Python script to
query the audited LevelDB provenance database and create a provenance graph
of the experiment with common shared libraries filtered out. The Python script
reads through approximately the 12,000 key-value pairs in 0.39s to create a
GraphViz script that can be converted to image or visualized later.

6.2 Redirection Overhead in CDE-SP

We also compared an execution of CDE package and CDE-SP package to measure
the redirection overhead of CDE-SP. Using the packages created by the above
experiment with two applications, Aggregation and Generate Image, we pipelined
output of Aggregation to input of Generate Image, which requires CDE-SP to
apply redirection among multiple CDE roots. The experiment showed 3 data
files, as outputs of Aggregation package, were moved to Generate Image package.
After the data was moved to the next package, the experiment was executed the
same as in CDE. The result shows less than a 1% slowdown of CDE-SP, which
maybe due to initial loading of library dependencies in Generate Image package.

6.3 CDE-SP Vs Kameleon

In this experiment, we used the Kameleon engine to make a bare bone VM
appliance that contains the content of a CDE-SP package corresponding to the
software pipeline described in the use case (Sect.4.1). The package content was

106 Q. Pham et al.

copied directly to the root file system of the VM appliance. In terms of user
software, the new VM appliance is close to a replica of the package, without any
redundant installed software. We compared the two approaches qualitatively and
quantitatively.

Qualitatively, the overhead of instantiating a VM is significant as compared to
creating a CDE-SP package. In particular, for CDE-SP the user needs to specify
input packages, and using one command, the author can create a new software
package. Kameleon is user friendly and can create virtual machine appliances in
different formats for different Linux distributions. But, users must provide self-
written YAML-formatted recipes or self-written macrosteps and microsteps to
generate customized virtual images. Based on the recipe input, it generates bash
scripts to create an initial virtual image of a Linux distribution, and populates
the initial image with more Linux packages to produce needed appliances.

Quantitatively, we compared the time for executing the software pipeline
within a CDE-SP package with time for execution within a VM. Note that
we do not compare time for initializing, since time for writing YAML scripts
cannot be measured in the case of Kameleon. During the execution, CDE-SP
redirected 2717 file-read system calls, 10 file-write system calls, 17 file-read-write
system calls. Figure 3 shows that the Kameleon VM appliance slowed down the
experiment significantly: approximately 200 % or more. This heavyweight VM
overhead is substantial in comparison with the CDE-SP lightweight approach.

7 Related Work

Details about software have been included in provenance collected within work-
flow systems. For instance, Research Objects [4], packages scientific workflows
with auxiliary information about workflows, including provenance information
and metadata, such as the authors, the version. Our focus here is not limited to
any specific workflow system.

Software packaging tools such as CDE [12,13] and Sumatra [8] can capture an
execution environment in a lightweight fashion. Sumatra captures the environ-
ment at the programming level (Python), while CDE operates at the operating
system level, and is thus more generic. Even at the system level, different trac-
ing mechanisms can be used. At the user-space level, ptrace [1] is a common
mechanism, whereas at the kernel-level, use of SystemTap [18] is more common.
SystemTap, being kernel-based, has better performance compared to ptrace since
it avoids context switching between the tracee (which is in the kernel) and the
tracer (which is user space) [14]. However, from a reproducibility standpoint,
SystemTap needs to run at a higher privilege level, i.e., it requires root access,
creating a more restricted environment.

Virtual machine images (VMIs) provide a means of capturing the environ-
ment in a form that permits later replay of a computation. Kameleon [10] uses a
bash script generator to create virtual images from scratch for any Linux distri-
butions. Using recipes, users can generate customized virtual images with pre-
defined software packages to run on different cloud computing service providers.
We have compared our approach with creating VMIs for reproducibility.

Auditing and Maintaining Provenance in Software Packages 107

Tools such as Provenance-to-Use (PTU) [17] and ReproZip [5] have demon-
strated the advantages of including provenance in self-contained software
packages. Currently, these tools include execution provenance and not soft-
ware provenance. Finally, software provenance is an emerging area that uses
Bertillonage metrics for finding software entities in large code repositories [7].
In this paper, we have described how software provenance can help in building
packages that can satisfy reproducibility guidelines.

8 Conclusion

CDE is a software packaging tool that helps to encapsulate static and dynamic
dependencies and environments associated with an application. However, CDE
does not encapsulate provenance of the associated dependencies such as their
build, version, compiler, and distribution. The lack of information about the ori-
gins of dependencies in a software package creates issues when constructing soft-
ware pipelines from packages. In this paper, we have introduced CDE-SP, which
can include software provenance as part of a software package. We have demon-
strated how this provenance information can be used to build software pipelines.
Finally, we have described how the CDE-SP can maintain provenance when used
to construct software pipelines.

Acknowledgments. The authors would like to thank the following participants in
the RDCEP Center, in particular, Neil Best, Joshua Elliott and Justin Wozniak at
The University of Chicago, Columbia University, and Argonne National Laboratory
for motivating our use case, and Allison Brizius for describing the Center’s activities.
This work is supported by NSF grant SES-0951576 and subcontract award under grant
GEO-1343816.

Appendix

In our use case, A, B, and C develop open-source code and use publicly-available
datasets. Their specified software environments, which may appear different,
can be still overlapping. To demonstrate the magnitude of overlap, we assume
that each developer uses the cloud for their research, which is not uncommon
in today’s projects, and chooses a different Linux distribution. Differences in
the choice of linux distributions is also not surprising as the Linux Counter
Distributions Report [16] indicates that there is no clean winner in terms of
usage of Linux distributions, with no one distribution accounting for more than
30 %. Further, we limit software environments to refer to application binaries
and libraries that are often overlapping and create conflicts.

If the two assumptions are sound, then the overlap in the environment, i.e.,
files which have the same path, but differing content, can be as high as 18 %. We
calculate this by taking five Linux distributions with similar setup available on
Amazon EC2. For each pair of machines, we calculate the number of files with
the same path on two machines, and the number of files with the same path on

108 Q. Pham et al.

two machines but having different md5 checksum. Table 3 shows that between
any two machines, on average, 6.8 % of files have the same path but differ in
content. In other words, these files are not interchangeable but depend on the
underlying operating system.

Table 3. Ratio of different files having the same path in 5 popular AMIs. The denom-
inator is number of files having the same path in two distributions, and the numerator
is the number of files with the same path but different md5 checksum. Ommited are
manual pages in /usr/share/ directory.

RH SUSE |U12 U13
Amz |5498/23k 3184/11k 1203/5.4k 1819/5.5k
RH 3861/12k 1654/6.6 k 2223/6.3k
SUSE 1245/3.9k 2085/6.4k
U12 8226,/24 k

References

1. ptrace(2) - Linux man page. http://linux.die.net/man/2/ptrace
Replacing ptrace(). http://uninformed.org/index.cgi?v=4&a=3&p=14

3. Swift appliance at science clouds. http://scienceclouds.org/appliances/swift-
appliance/

4. Belhajjame, K., Corcho, O., et al.: Workflow-centric research objects: First class
citizens in scholarly discourse. In: Proceedings of Workshop on the Semantic Pub-
lishing (SePublica), Crete, Greece (2012)

5. Chirigati, F., Shasha, D., Freire, J.: ReproZip: using provenance to support com-
putational reproducibility. In: USENIX Workshop on the Theory and Practice of
Provenance, TaPP 2013 (2013)

6. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10),
1367-1372 (2004)

7. Davies, J., German, D.M., Godfrey, M.W., Hindle, A.: Software bertillonage.
Empirical Softw. Engg. 18(6), 1125-1155 (2013)

8. Davison, A.P.: Automated capture of experiment context for easier reproducibility
in computational research. Comput. Sci. Eng. 14, 48-56 (2012)

9. Elliott, J., et al.: Constraints and potentials of future irrigation water availability
on agricultural production under climate change. In: Proceedings of the National
Academy of Sciences (2013)

10. Emeras, J., Richard, O., Bzeznik, B.: Reconstructing the software environment of
an experiment with kameleon (2011)

11. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Mathematical Programming
Language. ATT Bell Laboratories, Murray Hill (1987)

12. Guo, P.: CDE: Run any linux application on-demand without installation. Tech-
nical. report, USENIX Association, Boston, Massachusetts (2011)

13. Guo, P.J., Engler, D.: CDE: Using System Call Interposition to Automatically
Create Portable Software Packages. USENIX Association, Portland (2011)

N

14.

15.

16.
17.

18.
19.
20.
21.

22.

Auditing and Maintaining Provenance in Software Packages 109

Keniston, J., Mavinakayanahalli, A., Panchamukhi, P., Prasad, V.: Ptrace, utrace,
uprobes: Lightweight, dynamic tracing of user apps. In: Linux Symposium (2007)
Krampis, K., et al.: Cloud BioLinux: pre-configured and on-demand bioinformatics
computing for the genomics community. BMC Bioinf. 13(1), 42 (2012)

Lohner, A.: Lico-Project information (2012)

Pham, Q., Malik, T., Foster, I.: Using provenance for repeatability. In: USENIX
Workshop on the Theory and Practice of Provenance (2013)

Prasad, V., Cohen, W., Eigler, F., Hunt, M., Keniston, J., Chen, B.: Locating
system problems using dynamic instrumentation (2005)

Seiler, J.: Research compendia: Connecting computation to publication (2013)
Singh, J.: FigShare. J. Pharmacol. Pharmacotherapeutics 2(2), 138-139 (2011)
Stodden, V., Hurlin, C., Perignon, C.: RunMyCode.Org: a novel dissemination and
collaboration platform for executing published computational results (2012)
Wegener, 1.: Complexity Theory Exploring the Limits of Efficient Algorithms.
Springer, Berlin (2005)

